Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.450
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663861

RESUMO

Despite considerable advances in artificial bone tissues, the absence of neural network reconstruction in their design often leads to delayed or ineffective bone healing. Hence, we propose a multilayer hierarchical lithium (Li)-doped titanium dioxide structure, constructed through microarc oxidation combined with alkaline heat treatment. This structure can induce the sustained release of Li ions, mimicking the environment of neurogenic osteogenesis characterized by high brain-derived neurotrophic factor (BDNF) expression. During in vitro experiments, the structure enhanced the differentiation of Schwann cells (SCs) and the growth of human umbilical vein endothelial cells (HUVECs) and mouse embryo osteoblast progenitor cells (MC3T3-E1). Additionally, in a coculture system, the SC-conditioned media markedly increased alkaline phosphatase expression and the formation of calcium nodules, demonstrating the excellent potential of the material for nerve-induced bone regeneration. In an in vivo experiment based on a rat distal femoral lesion model, the structure substantially enhanced bone healing by increasing the density of the neural network in the tissue around the implant. In conclusion, this study elucidates the neuromodulatory pathways involved in bone regeneration, providing a promising method for addressing bone deformities.

2.
Trends Neurosci ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664110

RESUMO

In a recent study, Shvedov and colleagues used live two-photon imaging in transgenic zebra finches to reveal migration patterns of neuroblasts through the complex environment of the postembryonic brain. This study highlights the value of ubiquitin C/green fluorescent protein (UBC-GFP) transgenic zebra finches in studying adult neurogenesis and advances our understanding of dispersed long-distance neuronal migration in the adult brain, shedding light on this understudied phenomenon.

3.
Neurotherapeutics ; : e00362, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38664194

RESUMO

Genomic screened homeobox 1 (Gsx1 or Gsh1) is a neurogenic transcription factor required for the generation of excitatory and inhibitory interneurons during spinal cord development. In the adult, lentivirus (LV) mediated Gsx1 expression promotes neural regeneration and functional locomotor recovery in a mouse model of lateral hemisection spinal cord injury (SCI). The LV delivery method is clinically unsafe due to insertional mutations to the host DNA. In addition, the most common clinical case of SCI is contusion/compression. In this study, we identify that adeno-associated virus serotype 6 (AAV6) preferentially infects neural stem/progenitor cells (NSPCs) in the injured spinal cord. Using a rat model of contusion SCI, we demonstrate that AAV6 mediated Gsx1 expression promotes neurogenesis, increases the number of neuroblasts/immature neurons, restores excitatory/inhibitory neuron balance and serotonergic neuronal activity through the lesion core, and promotes locomotor functional recovery. Our findings support that AAV6 preferentially targets NSPCs for gene delivery and confirmed Gsx1 efficacy in clinically relevant rat model of contusion SCI.

4.
Int J Neuropsychopharmacol ; 27(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38629703

RESUMO

The understanding of the pathophysiology of schizophrenia as well as the mechanisms of action of antipsychotic drugs remains a challenge for psychiatry. The demonstration of the therapeutic efficacy of several new atypical drugs targeting multiple different receptors, apart from the classical dopamine D2 receptor as initially postulated unique antipsychotic target, complicated even more conceptualization efforts. Here we discuss results suggesting a main role of the islands of Calleja, still poorly studied GABAergic granule cell clusters in the ventral striatum, as cellular targets of several innovative atypical antipsychotics (clozapine, cariprazine, and xanomeline/emraclidine) effective in treating also negative symptoms of schizophrenia. We will emphasize the potential role of dopamine D3 and M4 muscarinic acetylcholine receptor expressed at the highest level by the islands of Calleja, as well as their involvement in schizophrenia-associated neurocircuitries. Finally, we will discuss the implications of new data showing ongoing adult neurogenesis of the islands of Calleja as a very promising antipsychotic target linking long-life neurodevelopment and dopaminergic dysfunction in the striatum.


Assuntos
Antipsicóticos , Esquizofrenia , Antipsicóticos/farmacologia , Humanos , Animais , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo , Ínsulas Olfatórias/efeitos dos fármacos , Ínsulas Olfatórias/metabolismo , Neurogênese/efeitos dos fármacos
5.
Front Psychiatry ; 15: 1283406, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38654728

RESUMO

Background: Discovering biological markers is essential for understanding and treating mental disorders. Despite the limitations of current non-invasive methods, neural progenitor cells from the olfactory epithelium (hNPCs-OE) have been emphasized as potential biomarker sources. This study measured soluble factors in these cells in Major Depressive Disorder (MDD), Borderline Personality Disorder (BPD), and healthy controls (HC). Methods: We assessed thirty-five participants divided into MDD (n=14), BPD (n=14), and HC (n=7). MDD was assessed using the Hamilton Depression Rating Scale. BPD was evaluated using the DSM-5 criteria and the Structured Clinical Interview for Personality Disorders. We isolated hNPCs-OE, collected intracellular proteins and conditioned medium, and quantified markers and soluble factors, including Interleukin-6, interleukin-8, and others. Analysis was conducted using one-way ANOVA or Kruskal-Wallis test and linear regression. Results: We found that hNPCs-OE of MDD and BPD decreased Sox2 and laminin receptor-67 kDa levels. MASH-1 decreased in BPD, while tubulin beta-III decreased in MDD compared to controls and BPD. Also, we found significant differences in IL-6, IL-8, MCP-1, and thrombospondin-1 levels between controls and MDD, or BPD, but not between MDD and BPD. Conclusions: Altered protein markers are evident in the nhNPCs-OE in MDD and BPD patients. These cells also secrete higher concentrations of inflammatory cytokines than HC cells. The results suggest the potential utility of hNPCs-OE as an in vitro model for researching biological protein markers in psychiatric disorders. However, more extensive validation studies are needed to confirm their effectiveness and specificity in neuropsychiatric disorders.

6.
J Neuroinflammation ; 21(1): 104, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649932

RESUMO

BACKGROUND: Postoperative cognitive dysfunction (POCD) is a common neurological complication of anesthesia and surgery in aging individuals. Neuroinflammation has been identified as a hallmark of POCD. However, safe and effective treatments of POCD are still lacking. Itaconate is an immunoregulatory metabolite derived from the tricarboxylic acid cycle that exerts anti-inflammatory effects by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. In this study, we investigated the effects and underlying mechanism of 4-octyl itaconate (OI), a cell-permeable itaconate derivative, on POCD in aged mice. METHODS: A POCD animal model was established by performing aseptic laparotomy in 18-month-old male C57BL/6 mice under isoflurane anesthesia while maintaining spontaneous ventilation. OI was intraperitoneally injected into the mice after surgery. Primary microglia and neurons were isolated and treated to lipopolysaccharide (LPS), isoflurane, and OI. Cognitive function, neuroinflammatory responses, as well as levels of gut microbiota and their metabolites were evaluated. To determine the mechanisms underlying the therapeutic effects of OI in POCD, ML385, an antagonist of Nrf2, was administered intraperitoneally. Cognitive function, neuroinflammatory responses, endogenous neurogenesis, neuronal apoptosis, and Nrf2/extracellular signal-related kinases (ERK) signaling pathway were evaluated. RESULTS: Our findings revealed that OI treatment significantly alleviated anesthesia/surgery-induced cognitive impairment, concomitant with reduced levels of the neuroinflammatory cytokines IL-1ß and IL-6, as well as suppressed activation of microglia and astrocytes in the hippocampus. Similarly, OI treatment inhibited the expression of IL-1ß and IL-6 in LPS and isoflurane-induced primary microglia in vitro. Intraperitoneal administration of OI led to alterations in the gut microbiota and promoted the production of microbiota-derived metabolites associated with neurogenesis. We further confirmed that OI promoted endogenous neurogenesis and inhibited neuronal apoptosis in the hippocampal dentate gyrus of aged mice. Mechanistically, we observed a decrease in Nrf2 expression in hippocampal neurons both in vitro and in vivo, which was reversed by OI treatment. We found that Nrf2 was required for OI treatment to inhibit neuroinflammation in POCD. The enhanced POCD recovery and promotion of neurogenesis triggered by OI exposure were, at least partially, mediated by the activation of the Nrf2/ERK signaling pathway. CONCLUSIONS: Our findings demonstrate that OI can attenuate anesthesia/surgery-induced cognitive impairment by stabilizing the gut microbiota and activating Nrf2 signaling to restrict neuroinflammation and promote neurogenesis. Boosting endogenous itaconate or supplementation with exogenous itaconate derivatives may represent novel strategies for the treatment of POCD.


Assuntos
Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2 , Neurogênese , Doenças Neuroinflamatórias , Complicações Cognitivas Pós-Operatórias , Succinatos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Masculino , Camundongos , Neurogênese/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Complicações Cognitivas Pós-Operatórias/metabolismo , Doenças Neuroinflamatórias/metabolismo , Succinatos/farmacologia , Succinatos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Anestesia
7.
Radiother Oncol ; 195: 110267, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38614282

RESUMO

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.

8.
Biochimie ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640996

RESUMO

Stem cell therapies hold promise in addressing the burden of neurodegenerative diseases with human embryonic neural stem cells (hNSC-H9s) and bone marrow-derived human mesenchymal stem cells (hMSCs) as viable candidates. The induction of hMSC neurospheres (hMSC-IN) generate a more lineage-restricted common neural progenitor-like cell population, potentially tunable by heparan sulfate proteoglycans (HSPGs). We examined CpG (5mC) site methylation patterns using Illumina Infinium 850K EPIC arrays in hNSC-H9, hMSCs and hMSC-IN cultures with HSPG agonist heparin at early and late phases of growth. We identified key regulatory CpG sites in syndecans (SDC2; SDC4) that potentially regulate gene expression in monolayers. Unique hMSC-IN hypomethylation in glypicans (GPC3; GPC4) underscore their significance in neural lineages with Sulfatase 1 and 2 (SULF1 &2) CpG methylation changes potentially driving the neurogenic shift. hMSC-INs methylation levels at SULF1 CpG sites and SULF2:cg25401628 were more closely aligned with hNSC-H9 cells than with hMSCs. We further suggest SOX2 regulation governed by lcSOX2-Overall Transcript (lncSOX2-OT) methylation changes with preferential activation of ENO2 over other neuronal markers within hMSC-INs. Our findings illuminate epigenetic dynamics governing neural lineage commitment of hMSC-INs offering insights for targeted mechanisms for regenerative medicine and therapeutic strategies.

9.
Mol Biol Rep ; 51(1): 507, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622406

RESUMO

BACKGROUND: Our previous research has demonstrated that hypoxic preconditioning (HPC) can improve spatial learning and memory abilities in adult mice. Adult hippocampal neurogenesis has been associated with learning and memory. The Neurogenic locus notch homolog protein (Notch) was involved in adult hippocampal neurogenesis, as well as in learning and memory. It is currently unclear whether the Notch pathway regulates hippocampal neuroregeneration by modifying the DNA methylation status of the Notch gene following HPC. METHOD: The HPC animal model and cell model were established through repeated hypoxia exposure using mice and the mouse hippocampal neuronal cell line HT22. Step-down test was conducted on HPC mice. Real-time PCR and Western blot analysis were used to assess the mRNA and protein expression levels of Notch1 and hairy and enhancer of split1 (HES1). The presence of BrdU-positive cells and Notch1 expression in the hippocampal dental gyrus (DG) were examined with confocal microscopy. The methylation status of the Notch1 was analyzed using methylation-specific PCR (MS-PCR). HT22 cells were employed to elucidate the impact of HPC on Notch1 in vitro. RESULTS: HPC significantly improved the step-down test performance of mice with elevated levels of mRNA and protein expression of Notch1 and HES1 (P < 0.05). The intensities of the Notch1 signal in the control group, the H group and the HPC group were 2.62 ± 0.57 × 107, 2.87 ± 0.84 × 107, and 3.32 ± 0.14 × 107, respectively, and the number of BrdU (+) cells in the hippocampal DG were 1.83 ± 0.54, 3.71 ± 0.64, and 7.29 ± 0.68 respectively. Compared with that in C and H group, the intensity of the Notch1 signal and the number of BrdU (+) cells increased significantly in HPC group (P < 0.05). The methylation levels of the Notch1 promoter 0.82 ± 0.03, 0.65 ± 0.03, and 0.60 ± 0.02 in the C, H, and HPC groups, respectively. The methylation levels of Notch1 decreased significantly (P < 0.05). The effect of HPC on HT22 cells exhibited similarities to that observed in the hippocampus. CONCLUSION: HPC may confer neuroprotection by activating the Notch1 signaling pathway and regulating its methylation level, resulting in the regeneration of hippocampal neurons.


Assuntos
Metilação de DNA , Hipocampo , Camundongos , Animais , Metilação de DNA/genética , Bromodesoxiuridina/metabolismo , Hipocampo/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Receptores Notch/metabolismo , RNA Mensageiro/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo
10.
Eur J Pharmacol ; 971: 176525, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38561101

RESUMO

Depression is a debilitating mental disease that negatively impacts individuals' lives and society. Novel hypotheses have been recently proposed to improve our understanding of depression pathogenesis. Impaired neuroplasticity and upregulated neuro-inflammation add-on to the disturbance in monoamine neurotransmitters and therefore require novel anti-depressants to target them simultaneously. Recent reports demonstrate the antidepressant effect of the anti-diabetic drug liraglutide. Similarly, the natural flavonoid naringenin has shown both anti-diabetic and anti-depressant effects. However, the neuro-pharmacological mechanisms underlying their actions remain understudied. The study aims to evaluate the antidepressant effects and neuroprotective mechanisms of liraglutide, naringenin or a combination of both. Depression was induced in mice by administering dexamethasone (32 mcg/kg) for seven consecutive days. Liraglutide (200 mcg/kg), naringenin (50 mg/kg) and a combination of both were administered either simultaneously or after induction of depression for twenty-eight days. Behavioral and molecular assays were used to assess the progression of depressive symptoms and biomarkers. Liraglutide and naringenin alone or in combination alleviated the depressive behavior in mice, manifested by decrease in anxiety, anhedonia, and despair. Mechanistically, liraglutide and naringenin improved neurogenesis, decreased neuroinflammation and comparably restored the monoamines levels to that of the reference drug escitalopram. The drugs protected mice from developing depression when given simultaneously with dexamethasone. Collectively, the results highlight the usability of liraglutide and naringenin in the treatment of depression in mice and emphasize the different pathways that contribute to the pathogenesis of depression.


Assuntos
Depressão , Flavanonas , Liraglutida , Camundongos , Animais , Depressão/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Inflamação/tratamento farmacológico , Neurogênese , Dexametasona/farmacologia
11.
J Affect Disord ; 355: 478-486, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574868

RESUMO

BACKGROUND: Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS: Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS: Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS: The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS: The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.


Assuntos
Transtorno Depressivo Maior , Privação do Sono , Humanos , Ratos , Masculino , Animais , Privação do Sono/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Corticosterona , Antígeno Ki-67/metabolismo , Hipocampo/metabolismo
12.
Expert Opin Ther Targets ; : 1-14, 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38622072

RESUMO

BACKGROUND: Major Depressive Disorder (MDD) is a prevalent and debilitating condition, necessitating novel therapeutic strategies due to the limited efficacy and adverse effects of current treatments. We explored how galanin receptor 2 (GALR2) and Neuropeptide Y1 Receptor (NPYY1R) agonists, working together, can boost brain cell growth and increase antidepressant-like effects in rats. This suggests new ways to treat Major Depressive Disorder (MDD). RESEARCH DESIGN AND METHODS: In a controlled laboratory setting, adult naive Sprague-Dawley rats were administered directly into the brain's ventricles, a method known as intracerebroventricular (ICV) administration, with GALR2 agonist (M1145), NPYY1R agonist, both, or in combination with a GALR2 antagonist (M871). Main outcome measures included long-term neuronal survival, differentiation, and behavioral. RESULTS: Co-administration of M1145 and NPYY1R agonist significantly enhanced neuronal survival and maturation in the ventral dentate gyrus, with a notable increase in Brain-Derived Neurotrophic Factor (BDNF) expression. This neurogenic effect was associated with an antidepressant-like effect, an outcome partially reversed by M871. CONCLUSIONS: GALR2 and NPYY1R agonists jointly promote hippocampal neurogenesis and exert antidepressant-like effects in rats without adverse outcomes, highlighting their therapeutic potential for MDD. The study's reliance on an animal model and intracerebroventricular delivery warrants further clinical exploration to confirm these promising results.

13.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167178, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636614

RESUMO

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by haploinsufficiency of transcription factor 4 (TCF4). In this work, we focused on the cerebral cortex and investigated in detail the progenitor cell dynamics and the outcome of neurogenesis in a PTHS mouse model. Labeling and quantification of progenitors and newly generated neurons at various time points during embryonic development revealed alterations affecting the dynamic of cortical progenitors since the earliest stages of cortex formation in PTHS mice. Consequently, establishment of neuronal populations and layering of the cortex were found to be altered in heterozygotes subjects at birth. Interestingly, defective layering process of pyramidal neurons was partially rescued by reintroducing TCF4 expression using focal in utero electroporation in the cerebral cortex. Coincidentally with a defective dorsal neurogenesis, we found that ventral generation of interneurons was also defective in this model, which may lead to an excitation/inhibition imbalance in PTHS. Overall, sex-dependent differences were detected with more marked effects evidenced in males compared with females. All of this contributes to expand our understanding of PTHS, paralleling the advances of research in autism spectrum disorder and further validating the PTHS mouse model as an important tool to advance preclinical studies.

14.
Front Hum Neurosci ; 18: 1352118, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562226

RESUMO

COVID-19's effects on the human brain reveal a multifactorial impact on cognition and the potential to inflict lasting neuronal damage. Type I interferon signaling, a pathway that represents our defense against pathogens, is primarily affected by COVID-19. Type I interferon signaling, however, is known to mediate cognitive dysfunction upon its dysregulation following synaptopathy, microgliosis and neuronal damage. In previous studies, we proposed a model of outside-in dysregulation of tonic IFN-I signaling in the brain following a COVID-19. This disruption would be mediated by the crosstalk between central and peripheral immunity, and could potentially establish feed-forward IFN-I dysregulation leading to neuroinflammation and potentially, neurodegeneration. We proposed that for the CNS, the second-order mediators would be intrinsic disease-associated molecular patterns (DAMPs) such as proteopathic seeds, without the requirement of neuroinvasion to sustain inflammation. Selective vulnerability of neurogenesis sites to IFN-I dysregulation would then lead to clinical manifestations such as anosmia and cognitive impairment. Since the inception of our model at the beginning of the pandemic, a growing body of studies has provided further evidence for the effects of SARS-CoV-2 infection on the human CNS and cognition. Several preclinical and clinical studies have displayed IFN-I dysregulation and tauopathy in gene expression and neuropathological data in new cases, correspondingly. Furthermore, neurodegeneration identified with a predilection for the extended olfactory network furthermore supports the neuroanatomical concept of our model, and its independence from fulminant neuroinvasion and encephalitis as a cause of CNS damage. In this perspective, we summarize the data on IFN-I as a plausible mechanism of cognitive impairment in this setting, and its potential contribution to Alzheimer's disease and its interplay with COVID-19.

15.
Front Neurosci ; 18: 1369274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562300

RESUMO

Most species of the bone-devouring marine annelid, Osedax, display distinct sexual dimorphism with macroscopic sedentary females rooted in bones and free-living microscopic dwarf males. The paedomorphic male resembles the non-feeding metatrochophore larva in size, presence of eight pairs of chaetae, and a head ciliation potentially representing a residual prototroch. The male development may thus uniquely reiterate and validate the theoretical heterochrony process "progenesis", which suggests that an accelerated sexual maturation and early arrest of somatic growth can lead to a miniaturized and paedomorphic adult. In this study, we describe the postembryonic larval and juvenile organogenesis of Osedax japonicus to test for a potential synchronous arrest of somatic growth during male development. Five postembryonic stages could be distinguished, resembling day one to five in the larval development at 10°C: (0D) first cleavage of fertilized eggs (embryos undergo unequal spiral cleavage), (1D) pre-trochophore, with apical organ, (2D) early trochophore, + prototroch, brain, circumesophageal connectives and subesophageal commissure, (3D) trochophore, + telotroch, four ventral nerves, (4D) early metatrochophore, + protonephridia, dorsal and terminal sensory organs, (5D) metatrochophore, + two ventral paratrochs, mid-ventral nerve, posterior trunk commissure, two dorsal nerves; competent for metamorphosis. The larval development largely mirrors that of other lecithotrophic annelid larvae but does not show continuous chaetogenesis or full gut development. Additionally, O. japonicus larvae exhibit an unpaired, mid-dorsal, sensory organ. Female individuals shed their larval traits during metamorphosis and continue organogenesis (including circulatory system) and extensive growth for 2-3 weeks before developing oocytes. In contrast, males develop sperm within a day of metamorphosis and display a synchronous metamorphic arrest in neural and muscular development, retaining a large portion of larval features post metamorphosis. Our findings hereby substantiate male miniaturization in Osedax to be the outcome of an early and synchronous offset of somatic development, fitting the theoretical process "progenesis". This may be the first compelling morpho-developmental exemplification of a progenetic origin of a microscopic body plan. The presented morphological staging system will further serve as a framework for future examination of molecular patterns and pathways determining Osedax development.

16.
Front Cell Neurosci ; 18: 1343745, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572071

RESUMO

Introduction: Platelet-activating factor (PAF), PAF receptor (PAFR), and PAF- synthesis/degradation systems are involved in essential CNS processes such as neuroblast proliferation, differentiation, migration, and synaptic modulation. The retina is an important central nervous system (CNS) tissue for visual information processing. During retinal development, the balance between Retinal Progenitor Cell (RPC) proliferation and differentiation is crucial for proper cell determination and retinogenesis. Despite its importance in retinal development, the effects of PAFR deletion on RPC dynamics are still unknown. Methods: We compared PAFR knockout mice (PAFR-/-) retinal postnatal development proliferation and differentiation aspects with control animals. Electrophysiological responses were analyzed by electroretinography (ERG). Results and discussion: In this study, we demonstrate that PAFR-/- mice increased proliferation during postnatal retinogenesis and altered the expression of specific differentiation markers. The retinas of postnatal PAFR-/- animals decreased neuronal differentiation and synaptic transmission markers, leading to differential responses to light stimuli measured by ERG. Our findings suggest that PAFR signaling plays a critical role in regulating postnatal RPC cell differentiation dynamics during retinal development, cell organization, and neuronal circuitry formation.

17.
FASEB J ; 38(7): e23595, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38572811

RESUMO

This study evaluates the sustained antidepressant-like effects and neurogenic potential of a 3-day intranasal co-administration regimen of galanin receptor 2 (GALR2) agonist M1145 and neuropeptide Y Y1 receptor (NPY1R) agonist [Leu31, Pro34]NPY in the ventral hippocampus of adult rats, with outcomes analyzed 3 weeks post-treatment. Utilizing the forced swimming test (FST), we found that this co-administration significantly enhances antidepressant-like behaviors, an effect neutralized by the GALR2 antagonist M871, highlighting the synergistic potential of these neuropeptides in modulating mood-related behaviors. In situ proximity ligation assay (PLA) indicated a significant increase in GALR2/NPYY1R heteroreceptor complexes in the ventral hippocampal dentate gyrus, suggesting a molecular basis for the behavioral outcomes observed. Moreover, proliferating cell nuclear antigen (PCNA) immunolabeling revealed increased cell proliferation in the subgranular zone of the dentate gyrus, specifically in neuroblasts as evidenced by co-labeling with doublecortin (DCX), without affecting quiescent neural progenitors or astrocytes. The study also noted a significant uptick in the number of DCX-positive cells and alterations in dendritic morphology in the ventral hippocampus, indicative of enhanced neuronal differentiation and maturation. These morphological changes highlight the potential of these agonists to facilitate the functional integration of new neurons into existing neural circuits. By demonstrating the long-lasting effects of a brief, 3-day intranasal administration of GALR2 and NPY1R agonists, our findings contribute significantly to the understanding of neuropeptide-mediated neuroplasticity and herald novel therapeutic strategies for the treatment of depression and related mood disorders, emphasizing the therapeutic promise of targeting neurogenesis and neuronal maturation processes.


Assuntos
Neuropeptídeo Y , Neuropeptídeos , Ratos , Animais , Receptor Tipo 2 de Galanina/agonistas , Receptor Tipo 2 de Galanina/metabolismo , Administração Intranasal , Galanina/farmacologia , Galanina/metabolismo , Hipocampo/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Neuropeptídeos/farmacologia , Antidepressivos/farmacologia , Neurogênese
18.
Cell Commun Signal ; 22(1): 216, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570868

RESUMO

BACKGROUND: Radiation-induced brain injury (RIBI) is a common and severe complication during radiotherapy for head and neck tumor. Repetitive transcranial magnetic stimulation (rTMS) is a novel and non-invasive method of brain stimulation, which has been applied in various neurological diseases. rTMS has been proved to be effective for treatment of RIBI, while its mechanisms have not been well understood. METHODS: RIBI mouse model was established by cranial irradiation, K252a was daily injected intraperitoneally to block BDNF pathway. Immunofluorescence staining, immunohistochemistry and western blotting were performed to examine the microglial pyroptosis and hippocampal neurogenesis. Behavioral tests were used to assess the cognitive function and emotionality of mice. Golgi staining was applied to observe the structure of dendritic spine in hippocampus. RESULTS: rTMS significantly promoted hippocampal neurogenesis and mitigated neuroinflammation, with ameliorating pyroptosis in microglia, as well as downregulation of the protein expression level of NLRP3 inflammasome and key pyroptosis factor Gasdermin D (GSDMD). BDNF signaling pathway might be involved in it. After blocking BDNF pathway by K252a, a specific BDNF pathway inhibitor, the neuroprotective effect of rTMS was markedly reversed. Evaluated by behavioral tests, the cognitive dysfunction and anxiety-like behavior were found aggravated with the comparison of mice in rTMS intervention group. Moreover, the level of hippocampal neurogenesis was found to be attenuated, the pyroptosis of microglia as well as the levels of GSDMD, NLRP3 inflammasome and IL-1ß were upregulated. CONCLUSION: Our study indicated that rTMS notably ameliorated RIBI-induced cognitive disorders, by mitigating pyroptosis in microglia and promoting hippocampal neurogenesis via mediating BDNF pathway.


Assuntos
Lesões Encefálicas , Disfunção Cognitiva , Camundongos , Animais , Estimulação Magnética Transcraniana/efeitos adversos , Estimulação Magnética Transcraniana/métodos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Microglia/metabolismo , Piroptose , Inflamassomos/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/terapia , Cognição , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Neurogênese/efeitos da radiação
19.
Stem Cell Reports ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38579708

RESUMO

SOX2 is a transcription factor involved in the regulatory network maintaining the pluripotency of embryonic stem cells in culture as well as in early embryos. In addition, SOX2 plays a pivotal role in neural stem cell formation and neurogenesis. How SOX2 can serve both processes has remained elusive. Here, we identified a set of SOX2-dependent neural-associated enhancers required for neural lineage priming. They form a distinct subgroup (1,898) among 8,531 OCT4/SOX2/NANOG-bound enhancers characterized by enhanced SOX2 binding and chromatin accessibility. Activation of these enhancers is triggered by neural induction of wild-type cells or by default in Smad4-ablated cells resistant to mesoderm induction and is antagonized by mesodermal transcription factors via Sox2 repression. Our data provide mechanistic insight into the transition from the pluripotency state to the early neural fate and into the regulation of early neural versus mesodermal specification in embryonic stem cells and embryos.

20.
Neuron ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38582081

RESUMO

Integration of new neurons into adult hippocampal circuits is a process coordinated by local and long-range synaptic inputs. To achieve stable integration and uniquely contribute to hippocampal function, immature neurons are endowed with a critical period of heightened synaptic plasticity, yet it remains unclear which mechanisms sustain this form of plasticity during neuronal maturation. We found that as new neurons enter their critical period, a transient surge in fusion dynamics stabilizes elongated mitochondrial morphologies in dendrites to fuel synaptic plasticity. Conditional ablation of fusion dynamics to prevent mitochondrial elongation selectively impaired spine plasticity and synaptic potentiation, disrupting neuronal competition for stable circuit integration, ultimately leading to decreased survival. Despite profuse mitochondrial fragmentation, manipulation of competition dynamics was sufficient to restore neuronal survival but left neurons poorly responsive to experience at the circuit level. Thus, by enabling synaptic plasticity during the critical period, mitochondrial fusion facilitates circuit remodeling by adult-born neurons.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...